第一章 节 玄妙之密率(3/3)
很不简单的事情。人们自然要追究他是采用什么办法得到这一结果的呢?他是用什么办法把圆周率从小数表示的近似值化为近似分数的呢?这一问题历来为数学史家所关注。由于文献的失传,祖冲之的求法已不为人知。后人对此进行了各种猜测。
1573年,德国人奥托得出一结果。他是用阿基米德成果22/7与托勒密的结果377/120用类似于加成法“合成”的:(377-22)/(120-7)=355/113。
1585年,荷兰人安托尼兹用阿基米德的方法先求得:333/106<π<377/120,用两者作为π的母近似值,分子、分母各取平均,通过加成法获得结果:3((15+17)/(106+120)=355/113。
两人虽都得出了祖冲之密率,但使用方法都为偶合,无理由可言。
在日本,十七世纪关孝和重要著作《括要算法》卷四中求圆周率时创立零约术,其实质就是用加成法来求近似分数的方法。他以3、4作为母近似值,连续加成六次得到祖冲之约率,加成一百十二次得到密率。其学生对这种按部就班的笨办法作了改进,提出从相邻的不足、过剩近似值就近加成的办法,这样从3、4出发,六次加成到约率,第七次出现25/8,就近与其紧邻的22/7加成,得47/15,依次类推,只要加成23次就得到密率。
钱宗琮先生在《中国算学史》(1931年)中提出祖冲之采用了中国何承天首创的“调日法”或称加权加成法。他设想了祖冲之求密率的过程:以徽率157/50,约率22/7为母近似值,并计算加成权数x=9,于是(157+22,9)/(50+79)=355/113,一举得到密率。钱先生说:“冲之在承天后,用其术以造密率,亦意中事耳。”
由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈肭二数之后,再使用这个工具,将3.14159265表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650…
而所有这些,其实都不准确。
大道无极,道法自然,越是深刻道理,往往越是隐藏于日常简单的事物之中。
后来当言羽真正解开了这神奇的圆周密率背后所隐藏的互比玄妙的天地万物演化之道时,才不得不感慨中国先灵的神奇和伟大。
之后言枫等先灵派科学家由此复古了太极万有同准理论,运用轩辕同准法,将最简单的“同准不规则容器算法”,运用于星际星系的体积和质量演算之中,打开了星际穿越之门,开创了地球人类向宇宙各星系全面拓展的新纪元。
本章已完成!
星空至尊
致初恋——藏在心底的那些小事
小小村医很风流
灰老头儿
我的绝美冷艳总裁
丹武帝尊
诸天从获得三界直播间开始
九星之主
诡异关系变质中
头条隐婚枕上宠