第一章 节 玄妙之密率(2/3)
有求出这个常数的准确值。几年后,数学家詹姆斯?斯特林(amestirling)指出,这个常数c等于2π的平方根。也就是说:
这个公式就被称作斯特林近似公式。
又如伽马函数:
阶乘运算本来是定义在正整数上的,但我们可以很自然地把它扩展到所有的正数上只需要寻找一条经过所有形如(n,n!)的整格点的曲线就可以了。由此定义出来的函数就叫做伽马函数,用希腊字母Г来表示。好了,神奇的事情出现了。我们有这样一个结论:
π再次出现在了与几何毫无关系的场合中!
又如平方数的倒数和的极限:
1的平方分之一,加上2的平方分之一,加上3的平方分之一,这样一直加下去,结果会怎样呢?这是一个非常吸引人的问题。
从上表中可以看到,越往后加,得数变化幅度就越小。可以预料,如果无穷地加下去,得数将会无限接近于某一个固定的数。这个数是多少呢?
1735年,大数学家欧拉(uler)非常漂亮地解决了这一问题。神奇的是,这个问题的答案里竟然包含有π:
又如两个整数互质的概率:
如果两个整数的最大公约数为1,我们就说这两个数是互质的。例如,9和14就是互质的,除了1以外它们没有其它的公共约数;9和15就不互质,因为它们有公共的约数3。可以证明这样一个令人吃惊的结论:任取两个整数,它们互质的概率是6/π2,恰好是上面一个问题的答案的倒数。在一个纯数论领域的问题中出现了圆周率,无疑给小小的希腊字母π更添加了几分神秘。
还有欧拉恒等式,这是整个数学领域中最伟大,最神奇的公式:
这个公式用加法、乘法、乘方这三个最基础的运算,把数学中最神奇的三个常数(圆周率π、自然底数e、虚数单位i)以及最根本的两个数(0和1)联系在了一起,没有任何杂质,没有任何冗余,漂亮到了令人敬畏的地步。这个等式也是由大数学家欧拉发现的,它就是传说中的欧拉恒等式(uler'sidentity),被评选为“史上最美的公式”。
。。。
而所有这些,竟都与π相关,都离不开神奇的圆周率。
说到圆周率π,不得不说到中国古代的一位奇人祖冲之。
祖冲之写的《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。
《隋书?律历志》留下一小段关于圆周率(π)的记载:“古之九数,圆周率三,圆径率一,其术疏舛……宋末,南徐州从事史祖冲之,更开密法,以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,肭数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈肭二限之间。密率,圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。”
讲到祖冲之以一忽(一丈的一亿分之一)为单位,求直径为一丈的圆的周长,算出π的真值在盈数3.1415926和肭数3.1415927之间,相当于精确到小数第7位,简化成3.1415926,成为当时世界上最先进的成就。
祖冲之因此入选后世的世界纪录协会成为全球第一位将圆周率值计算到小数的七位的科学家,这一纪录直到他千年以后的15世纪才由阿拉伯数学家卡西打破。
祖冲之还给出π的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位,在西方直到16世纪才由荷兰数学家奥托重新发现。
祖冲之编制了《大明历》,首次引用了岁差。并准确推算出从元嘉十三年(公元436年)到大明三年(459年)23年间发生的4次月食时间,以及其它五星会合周期,全部准确无误。
他还和儿子祖一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。他们提出来的“等积原理”:“幂势既同,则积不容异”,直到一千多年后才由意大利数学家卡瓦列里再次发现(卡瓦列里原理)。为了纪念他们,数学界也称这一原理为“祖原理”。
祖冲之的这一研究成果享有世界声誉:很多外国数学史家把圆周率π的密率叫做“祖率”,巴黎“发现宫”科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山,并把小行星1888命名为“祖冲之小行星”。。。
对于祖冲之选用两个简单的分数尤其是用密率来近似地表示π这一点,通常人们不会太注意。然而,实际上,后者在数学上有更重要的意义。
密率与π的近似程度很好,但形式上却很简单,并且很优美,只用到了数字1、3、5。数学史家梁宗巨教授验证出:分母小于16604的一切分数中,没有比密率更接近π的分数。在国外,祖冲之死后一千多年,西方人才获得这一结果。
可见,密率的提出是一件
本章未完,请翻下一页继续阅读.........
调教太平洋
时空位面大穿梭
罪妻
异常生物见闻录
幸孕重生之邪少霸妻
青云之路
我真不是绝世妖孽
最科学的符阵师
华娱:开启全民熬夜时代
东北出马实录